NAME

Practice A

For use with pages 456-461

Complete the table.

LESSON

8.2

	Exponent, n	3	2	1	Ō	-1	-2	-3
1.	Power, 2^n	8						
[•] 2.	Power, 3 ⁿ	27						
3.	Power, 4 ⁿ	64						

Evaluate the exponential expression. Write your answer as a fraction in simplest form.

4. 3 ⁻³	5. 2 ⁻⁵	6. 5 ⁰
7. $8^{0} \cdot 2^{-3}$	8. $3^5 \cdot 3^{-4}$	9. $5^{-7} \cdot 5^{9}$
10. $(2^3)^{-2}$	11 . (6 ⁻¹) ²	12. $(-2^3)^{-1}$

Rewrite the expression with positive exponents.

13. x^{-8}	14. $3x^{-5}$	15. $\frac{7}{x^{-2}}$
16. $\frac{9}{x^{-4}}$	17. $8x^{-7}y^{-8}$	18 . 3 <i>a</i> ⁻³
19. $\frac{3x^0}{y^{-3}}$	20. $(4x)^{-2}$	21 . (-2x) ⁻⁴
22. $(5x)^0y^{-2}$	23. $\frac{1}{(3x)^{-3}}$	24. $(2x)^{-2} \cdot 3y$

25. Complete the table.

x	-3	-2	-1	0	1	2	3
$y = 3^x$					_		

26. Graph the table of values you found in Exercise 25.

- 27. For the graph in Exercise 26, as the value of x increases, what happens to the value of y?
- **28.** Complete the table.

x	-3	-2	-1	0	1	2	3
$y = \left(\frac{1}{2}\right)^x$							

- 29. Graph the table of values you found in Exercise 28.
- **30.** For the graph in Exercise 29, as the value of x increases, what happens to the value of y?

DATE

Ъ., с

Name _____

Practice B

For use with pages 456-461

Evaluate the exponential expression. Write your answer as a fraction in simplest form.

1. 5 ⁻³	2. $\left(\frac{1}{3}\right)^{-1}$	3 . 6(6 ⁻⁴)
4. $-2^{\circ} \cdot \frac{1}{4^{-2}}$	5. $3^5 \cdot 3^{-7}$	6 . $7^3 \cdot 0^{-2}$
7. $10^{-2} \cdot 10^{2}$	8. $-2 \cdot (-2)^{-5}$	9 . (8 ²) ⁻¹
10. $9^{-2} \cdot 12^{0}$	11. $(-4^{-3})^{-1}$	12 . 1 • 1 ⁻⁸

Rewrite the expression with positive exponents.

14. $\frac{1}{3x^{-4}}$	15. x^3y^{-6}
17. $\frac{1}{11x^{-2}y^{-7}}$	18. $(-12)^0 y^{-2}$
20. $(2x^3y^{-8})^{-3}$	21. $(2^{-1}x^{-10})^7$
23. $\frac{1}{(8x^2)^{-3}}$	24. $\left(\frac{-12x^{-5}}{4x^{-5}}\right)^{-4}$
	14. $\frac{1}{3x^{-4}}$ 17. $\frac{1}{11x^{-2}y^{-7}}$ 20. $(2x^3y^{-8})^{-3}$ 23. $\frac{1}{(8x^2)^{-3}}$

25. Complete the table.

x	-2	-1	0	1	2
$y = \left(\frac{2}{3}\right)^x$					

26. Graph the table of values in Exercise 25.

27. For the graph in Exercise 26, as the value of x increases, what happens to the value of y?

28. Endangered Species Between 1990 and 2000, the population of an endangered species decreased at a rate of 0.1% per year. The population P in year t is given by P = 1200(0.999)', where t = 0 corresponds to 1995. Find the population of the species in 1990, 1995, 2000, and the projected population in 2010.

	1990	1995	2000	2010
t	(t = -5)	(t=0)	(t=5)	(t = 15)
$P = 1200(0.999)^{\prime}$				

29. Town Population Between 1960 and 1990, the population of a town increased at a rate of 0.34% per year. The population P in year t is given by $P = 2000(1.0034)^t$, where t = 0 corresponds to 1980. Find the population of the town in 1960, 1970, 1980, and 1990.

	1960	1970	1980	1990
t	(t = -20)	(t=-10)	(t=0)	(t = 10)
P = 2000(1.0034)'				

a and a station of the straight of

Date

Ŷ

Î,

)

·