\qquad

Practice A

Complete the table.

	Exponent, \boldsymbol{n}	3	2	1	0	-1	-2	-3
1.	Power, 2^{n}	8						
2.	Power, 3^{n}	27						
3.	Power, 4^{n}	64						

Evaluate the exponential expression. Write your answer as a fraction in simplest form.
4. 3^{-3}
5. 2^{-5}
6. 5^{0}
7. $8^{0} \cdot 2^{-3}$
8. $3^{5} \cdot 3^{-4}$
9. $5^{-7} \cdot 5^{9}$
10. $\left(2^{3}\right)^{-2}$
11. $\left(6^{-1}\right)^{2}$
12. $\left(-2^{3}\right)^{-1}$

Rewrite the expression with positive exponents.
13. x^{-8}
14. $3 x^{-5}$
15. $\frac{7}{x^{-2}}$
16. $\frac{9}{x^{-4}}$
17. $8 x^{-7} y^{-8}$
18. $3 a^{-3}$
19. $\frac{3 x^{0}}{y^{-3}}$
20. $(4 x)^{-2}$
21. $(-2 x)^{-4}$
22. $(5 x)^{0} y^{-2}$
23. $\frac{1}{(3 x)^{-3}}$
24. $(2 x)^{-2} \cdot 3 y^{5}$
25. Complete the table.

x	-3	-2	-1	0	1	2	3
$y=3^{x}$							

26. Graph the table of values you found in Exercise 25.
27. For the graph in Exercise 26, as the value of x increases, what happens to the value of y ?
28. Complete the table.

\boldsymbol{x}	-3	-2	-1	0	1	2	3
$\boldsymbol{y}=\left(\frac{1}{2}\right)^{\boldsymbol{x}}$							

29. Graph the table of values you found in Exercise 28.
30. For the graph in Exercise 29, as the value of x increases, what happens to the value of y ?
\qquad Date \qquad

Practice B

Evaluate the exponential expression. Write your answer as a

fraction in simplest form.

1. 5^{-3}
2. $\left(\frac{1}{3}\right)^{-1}$
3. $6\left(6^{-4}\right)$
4. $-2^{0} \cdot \frac{1}{4^{-2}}$
5. $3^{5} \cdot 3^{-7}$
6. $7^{3} \cdot 0^{-2}$
7. $10^{-2} \cdot 10^{2}$
8. $-2 \cdot(-2)^{-5}$
9. $\left(8^{2}\right)^{-1}$
10. $9^{-2} \cdot 12^{0}$
11. $\left(-4^{-3}\right)^{-1}$
12. $1 \cdot 1^{-8}$

Rewrite the expression with positive exponents.

13. $4 x^{-2}$
14. $\frac{1}{3 x^{-4}}$
15. $x^{3} y^{-6}$
16. $7 x^{-5} y^{-1}$
17. $\frac{1}{11 x^{-2} y^{-7}}$
18. $(-12)^{0} y^{-2}$
19. $(9 x)^{-4}$
20. $\left(2 x^{3} y^{-8}\right)^{-3}$
21. $\left(2^{-1} x^{-10}\right)^{7}$
22. $\frac{15}{5 y^{-3}}$
23. $\frac{1}{\left(8 x^{2}\right)^{-3}}$
24. $\left(\frac{-12 x^{-5}}{4 x^{-5}}\right)^{-4}$
25. Complete the table.

x	-2	-1	0	1	2
$y=\left(\frac{2}{3}\right)^{x}$					

26. Graph the table of values in Exercise 25.
27. For the graph in Exercise 26, as the value of x increases, what happens to the value of y ?
28. Endangered Species Between 1990 and 2000, the population of an endangered species decreased at a rate of 0.1% per year. The population P in year t is given by $P=1200(0.999)^{\prime}$, where $t=0$ corresponds to 1995 . Find the population of the species in 1990, 1995, 2000, and the projected population in 2010.

t	1990 $(t=-5)$	1995 $(t=0)$	2000 $(t=5)$	2010 $(t=15)$
$\boldsymbol{P}=\mathbf{1 2 0 0}(\mathbf{0 . 9 9 9})^{\prime}$				

29. Town Population Between 1960 and 1990, the population of a town increased at a rate of 0.34% per year. The population P in year t is given by $P=2000(1.0034)^{\mathrm{s}}$, where $t=0$ corresponds to 1980 . Find the population of the town in 1960, 1970, 1980, and 1990.

t	1960 $(t=-20)$	1970 $(t=-10)$	1980 $(t=0)$	1990 $(t=10)$
$P=2000(\mathbf{1 . 0 0 3 4})^{\prime}$				

